Liceo "G.B. Vico" Corsico - a.s. 2021-22

Programma svolto durante l'anno scolastico

Classe:	1^A
Materia:	Fisica
Insegnante:	Lauria Michela
Testo utilizzato:	Fabbri-Masini "FTE – Fisica Teorie Esperimenti – corso di fisica
	per il primo biennio" ed SEI

Argomenti svolti

Argomenti svotti				
ARGOMENTO	RIFERIMENTI			
Introduzione alla fisica:Il metodo sperimentale. Le misure.	MODULO 1 Le misure			
Il Sistema Internazionale di Unità. Le equivalenze (lunghezza, area, volume, litro, massa, tempo). La densità. Notazione scientifica e ordine di grandezza.	Unità 1			
Misure ed errori: L'incertezza della misura. L'errore relativo. I tipi di errore. Le serie di misure. Cifre significative e criteri di arrotondamento. Gli strumenti.	Unità 2			
Vettori ed equilibrio: Grandezze vettoriali. Le operazioni con i vettori. La scomposizione di vettori Vettori ed angoli (cenni alle funzioni goniometriche)	MODULO 2 LE FORZE E L'EQUILIBRIO			
Prodotto scalare e prodotto vettoriale	Unità 3			
Le forze e l'equilibrio: Le forze. Peso e massa La legge di Hook. La costante elastica L'equilibrio del punto materiale. L'equilibrio sul piano inclinato. Le forze d'attrito	Unità 3 e 4			
Equilibrio di un corpo rigido: Il corpo rigido esteso Somma di forze su un corpo rigido Momento di una forza rispetto a un punto Momento di una coppia di forze Centro di gravità. Le leve	Unità 4			
I fluidi: Stati della materia. La pressione Il principio di Pascal e il torchio idraulico. La legge di Stevino e i vasi comunicanti. Il principio di Archimede. La pressione atmosferica.	Unità 5			

Corsico, 3 giugno 2022

	I rappresentanti degli studenti:	L'insegnante:	
D	Overte teste mubblicate ou veb come firms	àidantica	

 $\mbox{N.B.}$ - Questo testo, pubblicato su web senza firma, è identico a quello firmato depositato in segreteria didattica

Indicazioni per le prove di recupero di settembre

Argomenti fondamentali per la prova di recupero

ARGOMENTO	RIFERIMENTI
Le misure Il Sistema Internazionale di Unità Le equivalenze (lunghezza, area, volume, litro, massa, tempo) La densità Notazione scientifica e ordine di grandezza	Unità 1
Grandezze vettoriali Le operazioni con i vettori La scomposizione di vettori Vettori ed angoli (cenni alle funzioni goniometriche) Prodotto scalare e prodotto vettoriale	Unità 3
Le forze Peso e massa La legge di Hook; La costante elastica L'equilibrio del punto materiale L'equilibrio sul piano inclinatoLe forze d'attrito Le leve	Unità 4
Stati della materia La pressione Il principio di Pascal e il torchio idraulico La legge di Stevino Il principio di Archimede La pressione atmosferica	Unità 5

Compiti per il lavoro estivo

Gli studenti promossi a giugno in fisica con una valutazione pari a 9 o 10 dovranno svolgere un esercizio (compresi gli esercizi dei test a risposta multipla) ogni 3. Gli studenti promossi a giugno in fisica con una valutazione pari a 7 o 8 dovranno svolgere due esercizi (compresi gli esercizi dei test a risposta multipla) ogni 3. Gli studenti promossi a giugno in fisica con una valutazione pari a 6 dovranno svolgere due esercizi su 3 e tutti i test a risposta multipla.

Gli studenti con debito in fisica a settembre, dovranno svolgere tutti gli esercizi e tutti i test a risposta multipla.

Dal libro di testo.

1. Introduzione alla fisica

Ripasso teorico da pagina 23 a 41.

Test a risposta multipla:

- Pag. 44 dal 1 al 13

Esercizi a pagina 45 in avanti numeri:

- N°4e5

- N° 10, 11 + dal 14 al 17 + dal 20 al 22 + dal 23 al 29 + dal 31 al 33 + dal 34 al 36
- N° dal 37 al 40
- Dal 51 al 56

2. Le misure e gli errori

Ripasso teorico da pagina 52 a 68.

Test a risposta multipla:

- Pag. 69 dal numero 1 al 12

3. Le forze e l'equilibrio

Ripasso teorico da pagina 87 a 108.

Test a risposta multipla:

- Pag. 109 dal 1 al 14

Esercizi da pagina 110 in avanti numeri:

- Dal 3 al 8 + 11, 15, 17, 19, 20, 32, 33, 34
- Dal 45 al 49
- Dal 54 al 61
- Dal 64 al 70

4. L'equilibrio dei corpi

Ripasso teorico da pagina 124 a 148.

Test a risposta multipla:

- Pag. 150 dal 1 a 12

Esercizi da pagina 151 in avanti numeri:

- Dal 16 al 20 + 25
- N° 50, 52, 53
- Dal 96 al 97 + dal 103 a 107

5. <u>L'equilibrio dei fluidi</u>

Rpasso teorico da pagina 174 a 187.

Test a risposta multipla:

- Pag. 188 dal 1 a 14

Esercizi da pagina 189 in avanti numeri:

- Dal 5 al 9
- Dal 12 al 14
- N° 18, 19, 21, 22
- Dal 29 al 34
- Dal 41 al 43
- N° 46, 47, 49, 50, 52, 53

Esempi di prove di recupero

Esempi di esercizi che potranno comporre la prova di recupero di settembre:

- 1. Esegui le seguenti equivalenze:
 - 872 cm = ... m
 - $5 m^2 = ... cm^2$
 - $0.132 m^3 = ... cm^3$
 - $6,3 \text{ kg} = \dots \text{ mg}$
 - 1,5 l = ... cm^3
 - 1 h 28 min = ... s

- 2. Scrivi in notazione scientifica i seguenti numeri.
 - 380 = ...
 - 0,0003 = ...
 - 290 000 000 = ...
 - 41,90 = ...
- 3. Scrivi in notazione decimale i seguenti numeri.
 - $4.1 \cdot 10^6 = \dots$
 - $7.20 \cdot 10^{-2} = ...$

Risolvi i seguenti problemi considerando il vaolore di π pari a 3,14.

- 4. La passeggiata mattutina di Luigi è caratterizzata sempre da tre tappe: casaedicola 1200 m, edicola-bar 7500 dm e infine bar-panchina del parco 1,4 km.
 - a) Determina il percorso complessivo in unità SI.
 - b) Se Luigi ogni 50 000 cm beve 10 cl di acqua, alla fine del percorso quanti litri ha bevuto?
 - c) Se Luigi impiega un quarto d'ora per il tragitto casa-edicola, 12 minuti per la seconda tappa e in totale impiega 57 minuti, qual è il tempo impiegato dal bar alla panchina in secondi?
- 5. Un gessetto di forma cilindrica ha il diametro di 1 cm ed è lungo 8 cm. Sapendo che la densità del gesso è pari a $2,2 g/cm^3$:
 - a) Come si esprime il volume del gessetto in unità SI?
 - b) Qual è la massa del gessetto in unità SI?
- 6. Una nave si muove sul mare calmo. In un'ora e mezza la nave si è spostata di 67,7 km verso Est e di 31,4 km verso Nord.
 - a) Disegna gli spostamenti effettuati dalla nave e calcola lo spostamento complessivo effettuato.
 - b) Rappresenta sul disegno lo spostamento totale effettuato dalla nave e calcola il suo valore numerico.
- 7. Due amici in montagna, utilizzando due corde, spingono nello stesso verso un amico seduto su una slitta esercitando forze di intensità rispettivamente 250 N e 200 N. Quanto vale la forza risultante esercitata se le direzioni delle corde formassero un angolo di 30°? Rappresentare graficamente il sistema.
- 8. Sulla Terra, un coniglio ha una massa di circa 3,80 kg. Se potesse viaggiare su Nettuno, il suo peso aumenterebbe di 4,56 N. La costante di proporzionalità tra peso e massa su Nettuno, è maggiore, uguale o minore rispetto alla Terra?
- 9. Una molla con costante elastica pari a 80,0 N/m ha una lunghezza di 13,6 cm mentre su di essa è applicata una forza di 2,30 N. Quanto è lunga la molla nella posizione di riposo?
- 10. Claudia e Alessandro sono su un'altalena. Claudia ha una massa di 45 kg e si trova a 110 cm dal centro dell'altalena, Alessandro ha una massa di 32 kg. A quale distanza dal centro si deve sedere Alessandro affinchè l'altalena rimanga in equilibrio?
- 11. Luigi, di massa 12 kg, è rimasto bloccato all'interno di uno scivolo al parco

acquatico. Sapendo che occupa una superficie di 2200 cm^2 e che lo scivolo è inclinato rispetto al terreno di 30°, determina la pressione che Luigi esercita sullo scivolo.

- 12. Si consideri un'auto di massa 1566 kg posta su una pedana di $S_1=1,48\,m^2$ collegata ad un pistone di sezione $S_2=131,4\,\cdot 10^{-4}\,m^2$. Quanta forza occorre esercitare sul pistone per riuscire ad alzare l'auto?
- 13. Per trovare la densità di un liquido, Alex usa un tubo a U. Uno dei due rami contiene acqua (densità $1,00\cdot 10^3~kg/m^3$) fino ad un'altezza di 26 cm mentre l'altro ramo, che contiene il liquido ignoto, è riempito fino a un'altezza di 16 cm. Trova la densità del liquido.
- 14. Il 23 gennaio del 1960, il batiscafo Trieste con a bordo Jaques Piccard e Don Walsh scese nel punto più profondo degli oceani, la fossa delle Marianne, a una profondità di 10,9 km. Il batiscafo era fornito di un oblò di plexiglas di diametro 70 mm. La densità media dell'acqua di mare è 1,03· $10^3\ kg/m^3$. Calcola la forza che agiva sull'oblò per effetto della pressione dell'acqua.

L'insegnante: